报告时间:2022年5月7日上午9:00-11:00

报告地点:腾讯会议(534-888-559)https://meeting.tencent.com/dm/iXebl48VnTlQ

报告题目:Sharp traveling waves for time-delayed Fisher-KPP type of degenerate diffusion equations

报告人:加拿大麦吉尔大学(McGill University)梅茗(Ming Mei)教授

邀请人:李坤

报告人简介:梅茗(Ming Mei),加拿大麦吉尔大学(McGill University)教授,Champlain学院教授。吉林省“长白山学者”讲座教授,东北师范大学“东师学者”讲座教授。同时担任《Applicable Analysis》《International Journal of Numerical Analysis and Modeling》《Advances in Mathematical Physics》等杂志的编委。

梅茗教授主要从事的研究领域为非线性偏微分方程的理论和数值分析,研究方向有解的渐近行为、稳定性理论、物理模型的相变问题、纳维-斯托克斯方程、半导体流体动力学方程、非线性波、KdV型方程、时滞反应扩散方程、种群动力学等。梅教授在上述领域和方向取得了许多有重要学术价值和影响的研究成果,他先后主持多项加拿大自然科学基金并在《Archive for Rational Mechanics and Analysis》《Mathematical Models and Methods in Applied Sciences》《Communications in Partial Differential Equations》《SIAM Journal on Mathematical Analysis》《Journal of Differential Equations》等国际顶级学术期刊上发表论文100余篇。

摘要:In this talk, we present the existence of critical traveling waves for the time-delayed Fisher-KPP type of degenerate diffusion equations. These waves are continuous sharp waves with sharp corners caused by the degeneracy of diffusion. The monotone reducing mechanism of the critical waves is also proved, that is, the critical wave speed is decreasing in time-delay. A new phase transform approach is introduced to analyze the delicate local and global behaviors of these critical sharp traveling waves.

This talk is based on a series of studies joint with Dr. Shanming Ji (季善明), Dr. Tianyuan Xu (徐田媛), and Prof. Jingxue Yin (尹景学)