报告时间:2020年12月11号下午14:50
报告地点:数计院会议室
报告题目:A multiple-relaxation-time lattice Boltzmann model based four-level finite-difference scheme for one-dimensional diffusion equation
报告人:华中科技大学柴振华教授
邀请人:杨旭光
报告人简介:柴振华,博士,教授,博士生导师,华中科技大学数学与统计学院副院长。主要从事介观格子Boltzmann方法、DUGKS方法及应用方面的相关研究,主持国家自然科学基金项目3项、博士后基金及特别资助各1项、湖北省自然科学基金1项,参与国家自然科学基金项目3项、国家重点基础研究发展规划(973)项目专题2项、国家重点研发计划“政府间国际科技创新合作”重点专项1项(三个任务负责人之一)、军委科技委项目1项。发表学术论文100余篇,SCI收录90余篇(ESI高被引论文2篇,Applied Mathematical Modelling杂志高被引论文1篇),SCI引用1800余次,SCI他引1400余次,H-index=25(数据来源于Web of Science)。
报告摘要:In this work, we will first present a multiple-relaxation-time lattice Boltzmann (MRT-LB) model for one-dimensional diffusion equation where the D1Q3 lattice structure (three discrete velocities in one-dimensional space) is considered. Then through the theoretical analysis, we obtain an explicit four-level finite-difference scheme from this MRT-LB method. The results show that through adjusting the weight coefficient and the relaxation parameters corresponding to the first and second moments, the four-level difference scheme not only has a sixth-order accuracy in space, but also is unconditionally stable. Finally, we also test the four-level sixth-order finite-difference scheme through some numerical simulations, and find that the numerical results are consistent with our theoretical analysis.