报告时间:2019年11月9日下午5:30-6:30

报告地点:数学院会议室

报告题目:Equivalent norms on Lipschitz-type spaces of hyperbolic harmonic mappings

报告人:陈姣龙博士

邀请人:李佩瑾

报告人简介:陈姣龙,女,湖南师范大学副教授,2019湖南师范大学“世承计划”青年人才。主要从事调和拟共形映射的研究,已在发表SCI论文十几篇,主持国家自然科学基金一项,湖南省自然科学基金一项。

报告摘要:Assume that n>3, u is a hyperbolic harmonic in the unit ball B^n and continuous to the boundary S^(n-1). We investigate the \omega-Lipschitz continuity of u, where \omega is a majorant. We show that u\in L_{\omega}(S^{n-1}) if and only if u\in L_{\omega}(\overline{\mathbb{B}}^{n}). As an application of the obtained result, we prove that if \omega is a fast majorant and \omega^{2} is a majorant, then the norm ||u||_{L_{\omega}(\overline{\mathbb{B}}^{n})} is quantitatively equivalent to certain Garsia-type norm.