报告时间:2019年10月19日16:30
报告地点:数学院会议室(玉衡北302)
报告题目:Periodic Traveling Wave Solutions of Periodic Integrodifference Systems
邀请人:李坤
报告人简介:林国,男,兰州大学数学与统计学院教授,博士生导师。1998-2008年就读于兰州大学并获得理学博士学位,2007年至今在兰州大学数学与统计学院工作。主要研究领域为微分方程与动力系统,特别关注一些经典模型的动力学行为,特别是非合作耦合系统的空间传播理论。这些研究成果总结在40余篇学术论文中,其中3篇入选高被引论文。主持结题国家自然科学基金青年、面上项目,参与国家自然科学基金重点项目。
报告摘要:We study the periodic traveling wave solutions of integrodifference systems with periodic parameters. Without the assumptions on monotonicity, the existence of periodic traveling wave solutions is deduced to the existence of generalized upper and lower solutions by fixed point theorem and an operator with multi steps. The asymptotic behavior of periodic traveling wave solutions is investigated by the stability of periodic solutions in the corresponding initial value problem or the corresponding difference systems. To illustrate our conclusions, we study the periodic traveling wave solutions of two models including a scalar equation and a competitive type system, which do not generate monotone semiflows. The existence or nonexistence of periodic traveling wave solutions with all positive wave speed is presented, which implies the minimal wave speeds of these models.